Shift2Ingres Code Architecture Document

Shift-2-Ingres

Migrate to Ingres now

Core Team Members:

Achal Rastogi, Chen Hsia Lee, Geetanjali Bahuguna,

Harsh Azad, Rohit Gaddi & Siddhartha Datta

Other Team Members:

Ashutosh Upadhyay, Tarun Bansal,

Koushik Ghosh & Vishwanath Reddy

Version 1.1

Table of Contents:

I. Solution outline and Architecture overview

… Page 02

II. Data Migration Tool

… Page 05

III. Core Layer

… Page 08

IV. Query Conversion

… Page 11

V. JDBC Drivers

… Page 13
I. Solution Outline and Architecture Overview

Objective

· Migrate data from an Application's Oracle/DB2 Database into an Ingres R3 Database.

· Run the Application on the Ingres R3 Database without any code changes.

· Easily to upgrade the database compatibility layer (level of Oracle/DB2 support)

· Easy to add support for migration of other databases.
Our Solution

· Provide with a data migration tool, which can migrate an Oracle/DB2 database into an Ingres R3 Database.

· Provide with a database compatibility layer, which can convert Oracle/DB2 specific queries into Ingres compatible queries.

Core Modules

1. Data Migration Tool – This migrates Users, Sequences, Tables, Views, Grants, PL/SQL procedures/functions/triggers, etc. from an existing Oracle/DB2 Database into an Ingres R3 Database.

2. Core Layer (CL) – This layer intercepts all the messages sent between application interfaces (e.g. JDBC, ODBC) and Ingres database server. It converts the messages from Oracle/DB2 format to Ingres format and then passes them onto the Ingres Server. This layer uses Query Compatibility Layer to do conversions of SQL Queries from Oracle/DB2 format to Ingres.
3. Query Compatibility layer (QC) – This parses Oracle/DB2 compatible SQL queries and converts them into Ingres R3 compatible SQL queries.

4. JDBC Drivers – These are modified versions of the Ingres R3 JDBC Driver, which return the same Error Codes as Oracle/DB2 JDBC Drivers and provide extra functionality such as Blob support.

Steps involved getting an Oracle/DB2 Application to run on Ingres R3

1. Migrate all the data from the Application’s Oracle Database to the Ingres R3 Database.
2. Replace the Oracle/DB2 Driver with our modified Ingres JDBC Driver (jar file) in the application and change the database connection URL to point to the Ingres Database Server installation.

3. Run the application!
Architecture Overview

I. Data Migration Tool

The Migration Process:

1. First the Database specific exporter gets all the Meta-Data (Schema, Grants, etc) from the Oracle/DB2 Database Server.

2. This information is then converted into a format, which is understandable, by the common Ingres Data importers. The Query Compatibility layer is used at times to covert the information.

3. These Ingres compatible queries are then executed on the Ingres R3 Database Server.
Note: For detailed explanation look at the Data Migration Tool Module Section
II. Application Execution

The application execution process:

1. All the applications use the JDBC Driver provided by us to connect to the core layer.

2. Core Layer makes a connection to the Ingres R3 Database Server for every connection made to it by the application.

3. The Core Layer passes all messages, which do not contain any SQL-Queries in them, directly to the Database Server.

4. For the messages containing SQL Queries, the core layer sniffs out the query from them, converts them into Ingres R3 compatible queries (using the QC module) and then sends them to the Ingres R3 Database Server.

5. For Oracle, all PL/SQL procedure calls are sent to the PL/SQL Compatibility Layer. This layer uses the existing connection made to the database to execute its queries.

II. Data Migration Tool

Overview

Database migration module is used to migrate the database objects such as tables, views, indices etc. and data from source database (either Oracle or DB2) to Ingres. The architecture of this module allows easy extension to support migration of databases other than Oracle and DB2 to Ingres. Here is a brief description of architecture.

The architecture divides the module into two broad sub modules namely exporter (the export module) and the importer (the import module).

· Exporter

Most general functionalities of exporter module are already implemented in such a way that they can be reused to add support for new databases. Only the database specific functionalities need to be implemented. There is an exporter for every database object type (which are currently supported). All the exporters have the following structure.

· Importer

The data migration tool has an importer for every object type in the database. The importer code can be fully reused for any source database type. So for every database the importer remains the same. But the architecture provides the flexibility to implement custom importers as well. This feature is particularly useful in cases such as data migration where if users do not want to use bulk loading (which is the one implemented in this tool) they can implement their own custom importer.

Following are the database objects that are currently supported by the tool:

· Users

· Tables

· Indices

· Views

· Sequences

· Procedures (Only for oracle)

· Triggers (Only for oracle)

· System Tables

· Synonyms

In addition to the above listed objects the tool also migrates following

· Data

· Database privileges held by the users.

· Table level privileges held by the users.

The general procedure for migrating an object from source database to Ingres has following two steps

1. Export the object from source database.

This involves reading the object from the source database and putting that in a format that the importer understands. This format is generally a set of queries.

2. Import the object into Ingres database.

This involves executing the queries generated by the exporter

Following is a detailed description of how migration proceeds

The migration process begins by asking the user to select amongst the database users that need to be migrated. For each database user selected the corresponding password also needs to be supplied. After this the application asks the user to choose the database objects that are to be migrated. After collecting the user inputs the migration proceeds in following sequence. (Following description assumes that user has selected to migrate all the objects. In case any object is not selected that can be skipped.)

· User Migration

In Ingres each database user must be an operating system user as well. So user migration first of all creates OS users. The target OS can be Linux or Windows 2000/XP/2003. The tools detects the underlying OS and based upon that executes appropriate user creation script to create the user with specified password. After the OS user is created application creates Ingres users with the same names and passwords. With this user migration ends and now user schema remains to be migrated. But before starting the schema migration all the users should be granted appropriate database privileges so that they may create their objects in Ingres. So next step is database privilege migration.

· Table Data Migration

For migrating table data, files (in ASCII format specified for bulk loading by Ingres) are generated for every table. Then the Ingres database is the given the file for bulk loading.

· PL/SQL Procedures and Functions

For Oracle, PL/SQL procedures and functions (with DDL & DML support) are migrated into java classes, which are loaded into the Core Layer. When the JDBC Driver executes a CallableStatement, we intercept the message and execute the corresponding Java Class instead. The java classes are also stored in the database for easily retrieval and execution.

· Trigger Migration
For Oracle, PL/SQL Triggers (with only DML support) are migrated into Ingres Procedures and appropriate Rules are created to execute these procedures.

· Data Verification Tool

Optionally, users can also select the option of doing data verification at the end of the migration. This checks if all the tables and the data in them have been migrated successfully.

Key features

· Robust, easy to use and fully automated data migration

· Separation of exporters (gather information from the other database) and importers (which load data into Ingres DB). This helps in maximizing code reuse across migration tool for different databases.

· Generates a report after the migration is completed stating all the objects migrated and not migrated.

· PL/SQL procedure and functions migration supporting DDL & DML.

· Migration of PL/SQL triggers with DML support.

Status

Please refer to the Feature List on the website to see the complete list of objects and functions being migrated for Oracle/DB2.

III. Core Layer

Overview

The purpose of this layer, between the application (through interfaces like JDBC and ODBC) and the Ingres Database Server, is to sniff all messages sent out between them and convert them from Oracle/DB2 format to Ingres and vice-versa.

For example, when a message stating executeQuery(“Select * from table_xyz”) is being sent to the database from the JDBC Driver of an application the core layer sniffs out this message and uses the Query Compatibility layer to convert the SQL Query into Ingres format then send the message ahead to Ingres Database after replacing the query.

Similarly when Ingres Server sends a message to the JDBC Driver of the application the core layer sniffs and converts it when needed.

Advantages

· Core Layer resides only on the Ingres Database Server. Therefore, it is very easily to maintain.

· Up-gradation of the application migration toolkit needs to be done only at the server side. No need to modify the client machines’ software every time.

Status

Currently the Core Layer has only the JDBC Filter Server. Therefore, only application using JDBC Interface can use the application migration toolkit right now.

Code Overview

· Package - org.shifttoingres.core.common

· ShiftToIngresCoreServer

This class starts all the Core Layer filter servers. Right now it starts the JDBCFilterServer.

· JDBCFilterServer
This starts a socket server and listens for JDBC Drivers to connect to it. For every connection it creates a new Thread running the DatabaseWriter object.

· DatabaseWriter

Every object of this class makes a connection to the Ingres Database (JDBC – iigcd) server. This object reads to all messages sent from the client JDBC Driver to the Core Layer, and forwards the messages to the Ingres Database Server after modifying them (making them Ingres compatible). The DatabaseWriter instantiates a new ClientWriter object for every instance of itself.

Currently we read all the MSG_QUERY & MSG_XACT messages. All the other messages are sent as it is to the Ingres Server. If the MSG_QUERY message has any SQL query in it, an Ingres Compatible SQL Query replaces it. This conversion is done through the Query Compatibility Layer (QC). MSG_XACT messages are parsed to store the current AutoCommit state of the JDBC connection.

The DatabaseWriter object also creates and maintains a replica Ingres JDBC Driver, which is used for executing PL/SQL procedures and functions (migrated in core layer). The replica JDBC Driver is also used to solve complex database compatibility behaviors such as Implicit Type Casting.

· ClientWriter

Every instance of this class reads all the messages sent from the Ingres Database Server to the JDBC Driver. It currently logs all the error messages sent by to the Database Server to the Driver. It also drops the messages if required to do so by the Core Layer.

· SharedData

This maintains all the common information required by the DatabaseWriter and the ClientWriter objects (Threads) acting on the same JDBC connection. The

· DefaultParameters

Default parameters for DatabaseWriter and ClientWriter classes.

· Package - org.shifttoingres.core.common.utility

· CoreConfig

Contains configuration/run time parameters used for running the Core Server. This reads the default properties from the Shift2Ingres_CoreServer.properties file. It can also be instantiated and used to start the CoreServer directly (without the property file).

· MsgInBuff

This class does a buffered read on the given InputStream (in our case Socket). This class reads the messages sent in the DAM Protocol format. It reads the headers and provides utility functions to read and process the message.

· MsgOutBuff

This class does a buffered write on the given OutputStream (in our case Socket). This class writes messages in DAM Protocol format. It provides utility functions to write out the messages.
· DAMHeader

DAM header.

· MessageHeader

Header of the message sent inside the DAM packet.

· EndOfMessageException

This exception is thrown when an unexpected End of Message is received i.e. we read number of bytes specified in the header>size but we expect more data.

· NotYourTurnToReadException

Thrown when someone tries to read from the given input stream in the MsgInBuff object, even when it is the replica JDBC driver’s turn to read messages. This is to ensure no data is wasted and the replica picks up the data read by the MsgInBuff thread.

Refer to Java docs for details on packages and classes.

Detailed Core Layer Architecture Diagrams

IV. Query Compatibility (QC)

Overview

The purpose of this module is to convert Oracle/DB2 specific SQL Queries to Ingres Compatible SQL queries. The conversion is done using antlr lexer and parser. Sometimes Oracle/DB2 queries are converted into multiple Ingres SQL queries, for example, Oracle Create or Replace SQL queries are mapped into drop and then create query. The core layer handles execution of multiple SQL Queries.

Query Compatibility module is used by the Core Layer and Data Migration tool. Core Layer uses it covert all the SQL queries it receives from the Client Database Interfaces. Data Migration tool uses it to covert all Meta-Data creation queries.

Key features

· Robust and fast Query Mapping
· Oracle and DB2 specific grammars are extended from common base grammar and the grammar translator is the same to maximize code reuse.
Code Overview

The query conversion process consists of lexical analysis of the input text to form tokens, parsing of the tokens to form syntax trees and then finally traversal of the syntax trees to get the converted query. Since the target language is Ingres for the input query irrespective of it being an Oracle or a DB2 query, a common tree parser/translator is being used. The parsers, Oracle and DB2, output the same tree in case of equivalent queries. A common lexer is used to take advantage of the intersection between keywords in Oracle and DB2.

The grammar is organized into base, sql and plsql grammars. The base grammar parses and translates basic building blocks of an SQL query like datatypes, expressions, conditions, etc. The sql grammar extends from the base grammar and parses and translates SQL queries. The plsql grammar extends from the sql grammar and parses and translates PLSQL modules like create procedure, create function, etc.

Each of the grammars is further subdivided into common, oracle and db2 grammars to ensure maximum reuse. The oracle and db2 grammars contain rules specific to oracle and db2 queries respectively and which differ syntactically or semantically across the two. The common grammar contains rules which do not differ across the two.

Antlr, a recursive descent LL(k) parser generator has been used to generate java files from the rule files.

· Package - org.shifttoingres.qc.base.common
BaseCommonLexer – Common Lexer.

Generated from BaseCommonLexer.g

I/P : The Oracle or DB2 query text.

O/P : Stream of tokens.

BaseCommonParser – Parser for SQL query subcomponents like datatypes, expressions, conditions, etc. which are common across Oracle and DB2.

Generated from BaseCommonParser.g

I/P : Stream of tokens.

O/P : Syntax tree.

BaseCommonTreeParser – Translator for SQL query sub-components like datatypes, expressions, conditions, etc. The translator is common for Oracle and DB2.

Generated from BaseCommonTreeParser.g

I/P : Syntax tree.

O/P : Ingres query text corresponding to the sub-component.

V. JDBC Drivers

Overview

This module is a modified copy of the Ingres R3 JDBC driver (iijdbc.jar). Modifications have been made to the driver to support differences between Oracle/DB2 JDBC drivers and Ingres R3 driver.

The modified JDBC driver, supports running in Ingres/Oracle/DB2 database mode. It has some of Oracle and DB2 extensions to ensure applications can run on Ingres with zero code change.

Here are some of the oracle/db2 specific classes migrated:

· oracle.jdbc.driver.OracleDriver

· oracle.sql.BLOB

· com.ibm.db2.jcc.DB2Driver

Advantages

· Zero code change required for Database Applications. The user only needs to replace the JDBC driver jar file for migrating his/her application.

· Extensions and modifications to Ingres Database JDBC Driver to support features like Oracle Blob support, Returning of Oracle/DB2 specific Driver Meta Data, Upgradable locks, etc.

· Its is easy to upgrade the Modified JDBC Drivers with the latest Ingres JDBC driver

Oracle/DB2 Database Server

Ingres R3 Database Server

Query Compatibility

Exporter

Importer

Schema Queries

Data Queries

Ingres R3 Database Server

Core Layer

Architecture Document

MsgOut

MsgIn

Query Compatibility

PL/SQL Compatibility

Our JDBC Driver

Data Migration Tool

Application 1

Application

JDBC Driver

ODBC Driver

Others

Core Layer

Ingres DB

JDBC Filter Server

ODBC Filter Server

Other Filter Servers

Core Layer

JDBCFilterServer

JDBCFilterServer

DatabaseWriter

MsgInBuff

MsgOutBuff

Socket

Connecting to JDBC Driver

This thread processes messages sent from JDBC Driver to the Ingres DB

This thread processes messages sent from Ingres DB to the JDBC Driver

MsgOutBuff

MsgInBuff

ClientWriter

JDBC Connection 1

SharedData

Socket

Connecting to Ingres DB Server

JDBC Connection 2

JDBC Connection n

Oracle/DB2 Database Server

Ingres R3 Database Server

Importers

Exporters

Data Queries

Query Compatibility (QC)

Schema Queries

Data Migration Tool

DB2 Specific Exporter

Base Exporter

Oracle Specific Exporter

Last updated on: 25/01/2005
 Version 1.1

